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Abstract

The high order conservative finite difference scheme of Morinishi et al. [Y. Morinishi, O.V. Vasilyev, T. Ogi, Fully
conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations, J. Comput. Phys. 197
(2004) 686] is extended to simulate variable density flows in complex geometries with cylindrical or cartesian non-uni-
form meshes. The formulation discretely conserves mass, momentum, and kinetic energy in a periodic domain. In the
presence of walls, boundary conditions that ensure primary conservation have been derived, while secondary conserva-
tion is shown to remain satisfactory. In the case of cylindrical coordinates, it is desirable to increase the order of accu-
racy of the convective term in the radial direction, where most gradients are often found. A straightforward centerline
treatment is employed, leading to good accuracy as well as satisfactory robustness. A similar strategy is introduced to
increase the order of accuracy of the viscous terms. The overall numerical scheme obtained is highly suitable for the
simulation of reactive turbulent flows in realistic geometries, for it combines arbitrarily high order of accuracy, discrete
conservation of mass, momentum, and energy with consistent boundary conditions. This numerical methodology is used
to simulate a series of canonical turbulent flows ranging from isotropic turbulence to a variable density round jet. Both
direct numerical simulation (DNS) and large eddy simulation (LES) results are presented. It is observed that higher
order spatial accuracy can improve significantly the quality of the results. The error to cost ratio is analyzed in details
for a few cases. The results suggest that high order schemes can be more computationally efficient than low order
schemes.
� 2008 Elsevier Inc. All rights reserved.
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1. Motivation and objectives

Although numerical methods for fluid dynamics have been the subject of intense research for a number of
years (see e.g. [1]), the accurate simulation of complex reactive turbulent flows remains a major challenge for
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any computer code. While the complexity of such flows demands highly accurate schemes for the physical
phenomena to be captured adequately, their potentially large density gradients and high unsteadiness require
robust numerical methods for large scale simulations to be possible. However, these two properties are not eas-
ily combined in a single scheme. High order accurate finite difference schemes suffer from an aliasing error in the
computation of the non-linear convection term of the Navier–Stokes equations, leading to an accumulation of
kinetic energy in the smallest scales [2]. To reduce the impact of the resulting wiggles on the numerical solution,
several strategies exist. De-aliasing can be performed in spectral space [3,4], even though this procedure is very
costly and unpractical for complex geometries or variable density flows. Lele [5] proposed the use of high order
filters in physical space. However, additional work has to be performed to ensure that the filtering operation
does not affect the numerical results. Yet another strategy is to introduce upwinding in the discretization in
order to stabilize the solution with numerical dissipation, but this approach has been shown to be less suited
for the simulation of turbulence [6,7]. In recent years, the most successful strategy for simulating turbulence
has been to employ a second order finite difference schemes on a staggered grid arrangement. This scheme, ini-
tially proposed by Harlow and Welch [8], can be shown to conserve kinetic energy discretely, therefore ensuring
its robustness. In order to efficiently carry out the simulation of turbulent reactive flows, Akselvoll and Moin
[9], followed by Pierce and Moin [10], adapted this scheme for variable density in cylindrical coordinates with a
semi-implicit Crank–Nicolson time advancement. Similar ideas have been used successfully in other studies
[11–13].

Despite its successes, this second order approach suffers from large truncation error. Indeed, the errors
obtained with a second order spatial discretization are not always negligible, and can be detrimental to the
accuracy of the computed results. To illustrate this point, a Gaussian-shaped vortex was convected in diagonal
direction inside a periodic unit box, as shown in Fig. 1. With a 32� 32 mesh, the vortex is represented on more
than 10 points in its diameter. Such a spatial discretization per eddy is scarcely found in direct numerical sim-
ulations (DNS), and even less in large eddy simulations (LES). After two periods, when the vortex is back at
the center of the domain, the second order scheme solution shows heavy distortions of the vortex shape, and
secondary structures are starting to appear. On the other hand, the sixth order solution shows almost no dif-
ference with the exact solution.

In order to reduce the truncation error associated with low order numerical methods, high order finite
difference compact schemes have been often employed [5,14]. However, direct implicit time integration can-
not be easily combined with these methods in the context of low Mach number flows, therefore they cannot
be easily employed in cylindrical geometries, for which the CFL restrictions at the pole (r ¼ 0) are highly
detrimental to the stability of numerical integration. Similarly, spectral methods are extremely challenging
to use in complex geometries, and their cost exceeds greatly that of finite difference methods. In more recent
works, primary conservation of mass and momentum as well as secondary conservation, i.e. conservation of
kinetic energy, was combined with high order finite difference schemes for incompressible flows. In his first
contribution on this subject, Morinishi et al. [15] proposed a set of fourth order conservative schemes for
Fig. 1. Contours of vorticity norm showing the effects of the order of accuracy for the diagonal convection of a Gaussian vortex for two
periods on a 32� 32 mesh.
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uniform cartesian coordinates on both collocated and staggered grid systems. This method was used by
Nicoud [16] to describe low Mach number flows using a variable coefficient Poisson equation. Vasilyev
[17] extended the incompressible fourth order conservative scheme of Morinishi et al. [15] to non-uniform
cartesian meshes, while retaining the conservation properties. In their latest contribution, Morinishi et al.
[18] presented a fully conservative finite difference scheme of arbitrary order of accuracy for staggered grid
extended to cylindrical coordinates. Such a contribution allows for new possibilities in the simulation of tur-
bulence, where highly accurate schemes can be employed while retaining discrete primary and secondary
conservation.

However, many obstacles remain in the path towards developing a numerical tool that can simulate reactive
turbulent flows with such high order conservative schemes. The objective of this paper is to alleviate some of
these difficulties. Towards the development of a general numerical framework for turbulent reactive DNS and
LES, the following elements are addressed in the present paper:

� A fully three-dimensional, variable density version of the scheme of Morinishi et al. [18] is presented for
cartesian and cylindrical geometries.
� Adequate boundary conditions are required in order to conduct more complex simulations. A consistent

approach for implementing boundary conditions is presented and tested.
� A strategy for the implementation of a high order viscous term is proposed, along with boundary

conditions.
� With these possibilities at our disposal, the question of the choice of the best order of accuracy can be

raised. In order to provide some insights to this answer, several canonical flows have been simulated in
order to establish best practice, and the results are discussed.

This paper is organized as follows: The next section presents the equations that are considered in this work.
Section 3 introduces the variable density formulation of the scheme of Morinishi et al. [18], along with test
cases to verify the accuracy and conservation of the method in the presence of a non-uniform mesh and density
variations. Section 4 deals with the implementation of boundary conditions, as well as the consequence in
terms of energy conservation. Section 5 presents a discussion on the centerline treatment that can be used
to handle the r ¼ 0 singularity in cylindrical coordinates for high order schemes. Section 6 introduces an arbi-
trarily high order accurate viscous scheme along with adequate boundary conditions. The higher order issues
addressed in sections four to six can be discussed both for variable and constant density flows, but are con-
sidered here only for the variable density case. Finally, in the last section, the full numerical scheme is
employed to simulate a range of canonical test problems that include turbulent and laminar cases, constant
and variable density cases, as well as LES and DNS. In this work, all the simulations have been performed
by an in-house code named ‘‘NGA”, where the numerical methods presented here have been implemented
in parallel using message passing interface (MPI).

2. Governing equations

We are interested in solving the variable density, low Mach number Navier–Stokes equations. Conservation
of mass reads
oq
ot
þr � qu ¼ 0; ð1Þ
where u is the velocity vector and q the fluid density. Conservation of momentum is written as
oqu

ot
þr � ðqu� uÞ ¼ �rp þr � r; ð2Þ
where p is the pressure, and
r ¼ lðruþ truÞ � 2

3
lr � uI: ð3Þ
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Here, l is the dynamic viscosity and I is the identity tensor. The following symbolic definitions can be
introduced:
ðcontÞ ¼ r � qu; ðdivÞ ¼ r � ðqu� uÞ;
ðpresÞ ¼ rp; and ðviscÞ ¼ r � r:

ð4Þ
The momentum vector will be written g ¼ qu.
In this work, it will be assumed that the density is obtained through a mixing or combustion model that

depends on flow variables and transported scalars. A typical model is to express the density as a function
of a conserved scalar Z that represents mixing [19] and for which a transport equation is solved:
oqZ
ot
þr � ðquZÞ ¼ r � ðqDZrZÞ; ð5Þ
where DZ is the diffusivity. In the remainder of this work, we will use q ¼ q̂ðZÞ as a combustion model, keeping
in mind that the actually applied model may depend on other variables. Similarly, the viscosity and diffusivity
will be obtained through l ¼ l̂ðZÞ and DZ ¼ bDZðZÞ. The additional symbolic definition can be introduced:
ðscalÞ ¼ r � ðquZÞ: ð6Þ
3. Variable density conservative finite difference scheme

In this section, we will present the variable density version of the scheme proposed by Morinishi et al. [18]
for cylindrical coordinates. Round and planar geometries being both of high interest, the scheme will be pre-
sented for both cylindrical and cartesian coordinate systems.

3.1. Coordinate system

The physical space is described by a coordinate system x ¼ ðx1; x2; x3Þ that can be cartesian, i.e.
ðx1; x2; x3Þ ¼ ðx; y; zÞ or cylindrical, i.e. ðx1; x2; x3Þ ¼ ðx; r; hÞ. The physical space is mapped into the uniform
computational space of unity spacing f ¼ ðf1; f2; f3Þ. Associated with this mapping, scaling factors can be
defined by differentiating the physical space with respect to the computational space, leading to
h1 ¼
dx1

df1

; h2 ¼
dx2

df2

; h3 ¼
dx3

df3

ð7Þ
for cartesian coordinates and
h1 ¼
dx1

df1

; h2 ¼
dx2

df2

; h3 ¼ x2

dx3

df3

ð8Þ
for cylindrical coordinates. From the scaling factors, the Jacobian can be defined by
J ¼ h1h2h3: ð9Þ

For the sake of generality of notation, the velocity will be written u ¼ tðu1; u2; u3Þ where in cartesian coordi-
nates ðu1; u2; u3Þ ¼ ðux; uy ; uzÞ, while in cylindrical coordinates we write ðu1; u2; u3Þ ¼ ðux; ur; uhÞ. The same nota-
tion is introduced for the momentum vector g ¼ tðg1; g2; g3Þ. The variables are staggered on the computational
mesh, their positions are shown in Fig. 2. Note that all scalar quantities (Z, q, l, DZ) are stored at the cell
center like the pressure.

3.2. Discrete operators

For reference, the discrete operators defined in [18] are reintroduced here. The second order interpolation
with stencil size n in the f1 direction acting on a quantity / is expressed by
�/
nf1ðf1; f2; f3Þ ¼

/ðf1 þ n=2; f2; f3Þ þ /ðf1 � n=2; f2; f3Þ
2

: ð10Þ
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�/
nf2 and �/

nf3 are defined in the same manner. The second order differentiation of stencil size n in the f1 direc-
tion of the quantity / is computed by
dn/
dnf1

ðf1; f2; f3Þ ¼
/ðf1 þ n=2; f2; f3Þ � /ðf1 � n=2; f2; f3Þ

n
: ð11Þ
dn/
dnf2

and dn/
dnf3

are defined in the same manner. To construct the nth order accurate operators, interpolation

weights al have to be computed by solving
Xn=2

l¼1

ð2l� 1Þ2ði�1Þal ¼ di1 for i 2 s1; n=2t; ð12Þ
where dij is the Kronecker delta. The nth order interpolation in the fi direction for i 2 f1; 2; 3g is then defined
by
�/
nthfi ¼

Xn=2

l¼1

al
�/
ð2l�1Þfi : ð13Þ
Similarly, the nth order differentiation operator will be
dnth/
dnthfi

¼
Xn=2

l¼1

al
dð2l�1Þ/

dð2l�1Þfi
: ð14Þ
The benefit of using these high order accurate staggered operators can be readily seen by looking at the
modified wave number diagrams shown in Fig. 3. Here, the modified wave number has been computed
for the staggered differentiation operator and for the combination of the staggered differentiation with
the staggered interpolation operator, which corresponds to the collocated differentiation operator. These
are typically the two types of operators which will be used in the solution of the Navier–Stokes equations.
It can be observed from these graphs that regardless of the operator type, it is beneficial to use high order
operators, for the dispersive errors are significantly reduced, especially at high wave numbers. Of course, the
staggered operator has significantly less errors than the collocated operator. Also, dissipative errors are
inexistent here since all operators are centered. In order to further analyze the a priori properties of these
schemes, the study of aliasing errors proposed by Kravchenko and Moin [2] is extended here to include the
fourth and sixth order schemes. By doing a Fourier analysis of the non-linear term computed by the differ-
ent schemes, the contribution due to the aliasing effect can be extracted. This is performed on a given mesh
and assuming a prescribed Von Karman spectrum for the velocity, following the procedure of Kravchenko
and Moin [2]. The computed aliasing error as a function of the wave number is shown in Fig. 4. It is clear



0 5 10 15 20

k

0

0.1

0.2

0.3

0.4

ε al
ia

si
ng

Fig. 4. Aliasing error: spectral (thick line); second (solid line), fourth (dashed line) and sixth (dotted line) orders.

0 π/4 π/2 3π/4 π
k Δx

0

π/4

π/2

3π/4

π
k m

od
Δx

0 π/4 π/2 3π/4 π
k Δx

0

π/4

π/2

3π/4

π

k m
od

Δx

Fig. 3. Modified wave number diagram: exact (thick line); second (solid line), fourth (dashed line) and sixth (dotted line) orders.

7130 O. Desjardins et al. / Journal of Computational Physics 227 (2008) 7125–7159
that a non-dealiased spectral scheme will give the most errors in this case, which is what is indeed seen in
Fig. 4. The second order scheme is less prone to these errors, followed by the fourth order and the sixth
order schemes. These results suggest that the higher the order of accuracy, the more the schemes exhibit
a spectral behavior.

3.3. Numerical discretization

Using these expressions, the divergence form of the convective term of the Navier–Stokes equations trans-
formed into computational space [18] will be written at any even order of accuracy n
ðdiv-nÞx1
¼
X3

i¼1

1

J
1f1

Xn=2

l¼1

al
dð2l�1Þ

dð2l�1Þfi

J
hi

gi

� �nthf1

u1
ð2l�1Þfi

" # !
; ð15Þ

ðdiv-nÞx2
¼
X3

i¼1

1

J
1f2

Xn=2

l¼1

al
dð2l�1Þ

dð2l�1Þfi

J
hi

gi

� �nthf2

u2
ð2l�1Þfi

" # !
� � 1

J
1f2

J
x2

g3
nthf3 u3

nthf3

� �nthf2

; ð16Þ

ðdiv-nÞx3
¼
X3

i¼1

1

J
1f3

Xn=2

l¼1

al
dð2l�1Þ

dð2l�1Þfi

J
hi

gi

� �nthf3

u3
ð2l�1Þfi

" # !
þ � 1

J
1f3

J
x2

g2
nthf2 u3

nthf3

� �nthf3

; ð17Þ
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where � is zero in cartesian coordinates and one in cylindrical coordinates.1

The divergence of the momentum vector that appears in the continuity equation will be written
1 Fo
directi

for

end

Th
vec
can
ðcont-nÞ ¼
X3

i¼1

1

J
dnth

dnthfi

J
hi

gi

� �� �
: ð18Þ
Finally, the pressure gradient will be expressed as
ðpres-nÞxi
¼ J

J
1fi

1

hi

dnthp
dnthfi

: ð19Þ
The Jacobian inverse that appears in front of every term in Eqs. (15)–(17) and (19) can be evaluated by a num-
ber of methods. In our numerical tests, very little difference on the resulting order of accuracy was obtained by
changing the way this term in computed. As a result, we chose to express it similarly to Morinishi et al. [18] by
using second order interpolation.

3.4. Relationship between velocity and momentum

Because of the staggering of the variables in space, the velocity components and the density are not located
at the same position. As a result, the ith component of the momentum vector is discretely expressed by
gi ¼ q2ndxi ui; ð20Þ

where the interpolation operator acting on the density is a second order interpolation in physical space that will
be introduced in Section 6. A similar strategy is employed to compute the interpolated values of viscosity and
diffusivity. Unbounded values of interpolated density are highly detrimental to the robustness of the variable
density scheme. In order to avoid this issue, the density interpolation should be total variation diminishing
(TVD). This is most easily achieved by limiting ourselves to a second order interpolation, regardless of the order
of accuracy of the rest of the scheme. While a higher order TVD interpolation could be designed, our numerical
experiments showed little effect of the second order density interpolation on the quality of the results.
r the sake of completeness, we include here the pseudo-code that is used to calculate in the array DIVX the convective term in the f1

on defined by Eq. (15) at any order n:

i ¼ 1 to Nx do

for j ¼ 1 to Ny do

for k ¼ 1 to Nz do

DIVXði; j; kÞ ( 0
for st ¼ �n=2 to n=2� 1 do

DIVXði; j;kÞ (DIVXði; j;kÞ þ 1=2divði; j; k; stÞG1ðiþ st; j; kÞðU1ðiþ 2stþ 1; j;kÞ þU1ði; j; kÞÞ
end for

for st ¼ �n=2þ 1 to n=2 do

DIVXði; j; kÞ (DIVXði; j; kÞ þ 1=2divði; j;k; stÞG2ði; jþ st;kÞðU1ði; jþ 2st� 1; kÞ þU1ði; j; kÞÞ
DIVXði; j; kÞ (DIVXði; j; kÞ þ 1=2divði; j;k; stÞG3ði; j; kþ stÞðU1ði; j; kþ 2st� 1Þ þU1ði; j; kÞÞ

end for

end for

end for

for

e array U1 contains the first component of the velocity vector, while G1, G2, and G3 are the three components of the momentum
tor. The array div contains the operator defined by Eq. (14) divided by J 1f1 at every ði; j; kÞ location. A schematic of the procedure
also be found in Fig. 9.
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3.5. Discretization of the scalar transport equation

While not the primary objective of this paper, the discretization of the scalar transport equation is included
here for the sake of completeness. The advection of a scalar quantity is discretely written
Table
Proper

Scalar

HOUC
HOUC
WENO
WENO
ðscal-nÞ ¼
X3

i¼1

1

J
dnth

dnthfi

J
hi

giZ
fi

� �� �
; ð21Þ
where /
fi

represents the interpolation of a scalar quantity / to a cell face in the fi direction. This interpo-
lation is specific to the scalar quantities, and has to be considered carefully. Indeed, the accuracy of scalar
transport quantities is a critical issue in turbulent reactive simulations. The boundedness of a conserved sca-
lar is often highly desirable for the stability of combustion models, and therefore TVD schemes such as
third order or fifth order WENO [20,21] can be considered as schemes of choice, despite the numerical dif-
fusion they induce. While not TVD, high order upwind central schemes (HOUC) [22] of any odd order are
also of great interest, for they allow to reach high order accuracy, while the slight upwinding helps obtain a
smooth scalar field. Two classes of HOUC schemes have been implemented, namely a finite volume type
interpolation (HOUCn

FV) and a finite difference type interpolation (HOUCn
FD). In both cases, n has to be

odd to allow for upwinding. To obtain the nth order accuracy for the scalar advection, the HOUCn
FV

has to be combined with a second order divergence operator, while the HOUCn
FD has to be combined with

an mth order divergence operator, where m > n. These properties of the scalar transport schemes, as well as
the required stencil size, are summarized in Table 1. Note for example that a third order HOUC corre-
sponds to Leonard’s QUICK scheme [23].

3.6. Temporal integration

The Navier–Stokes equations are solved using the second order semi-implicit Crank–Nicolson scheme of
Pierce and Moin [10]. Inspired by the classical fractional step approach [24], this iterative time advancement
scheme uses staggering in time between the momentum field and the scalar and density fields. The scalars are
advanced first, the density field is updated, and the momentum equations are then advanced. The pressure
Poisson equation is then solved to enforce continuity using a combination of spectral methods, Krylov-based
methods [25], and multi-grid methods [26], depending on the geometry of the problem. In order to relax the
CFL conditions that can limit very severely the time step size in cylindrical coordinates, an implicit correction
is computed for the scalar and momentum equations, using an approximate factorization technique similar to
the one used by Choi and Moin [27]. This implicit correction requires the solution of a poly-diagonal system in
parallel for each velocity component and for each spatial direction that is treated implicitly. The number of
diagonals in the linear problem depends on the order of the scheme. For example, the second order formula-
tion leads to a tri-diagonal system, while the fourth order formulation leads to a hepta-diagonal problem. This
semi-implicit approach combines the benefit of conserving kinetic energy discretely in time in the case of con-
stant density, as discussed in Ham et al. [28], and of allowing to run with greatly relaxed CFL restrictions. It
should however be noted that in the case of variable density, this methodology fails to discretely conserve
kinetic energy. Indeed, Pierce and Moin [10] showed that a second order temporal error that is proportional
to the time derivative of density is introduced.
1
ties of the different scalar transport schemes used

scheme Divergence order Global accuracy TVD property Total stencil length

n
FV 2 n � nþ 2
n
FD m minðn;mÞ � nþ m
-3 2 up to 3 U 5
-5 2 up to 5 U 7
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3.7. Conservation properties

For all terms written in divergence form, it has been noted that conservation is achieved a priori [18]. As a
result, quantities such as mass, momentum, or fuel mass fraction solved using a scalar transport equation are
conserved discretely. However, to prove discrete energy conservation, a transport equation for the kinetic
energy should be written. As for its analytical counterpart, this transport equation is based on the continuity
and momentum equations. If all terms in the kinetic energy equation can be written in the form of a diver-
gence, then kinetic energy is discretely conserved.

As already pointed out by Morinishi et al. [15] and Vasilyev [17], local kinetic energy is ambiguous to define
in a staggered grid arrangement, as the velocity components are found at different locations. The square of the
velocity components can be evaluated at the center of each of the faces and then interpolated back at the cell
center. This way, the discrete kinetic energy should be defined as
K ¼ 1

2J

X3

i¼1

J
1fi giui; ð22Þ
where �/ represents a cell-centered value of / obtained by any interpolation technique. As the mesh is non-uni-
form, the Jacobians have to be reintroduced to account for stretching. The discrete transport equation for the
kinetic energy will be deduced from the discrete transport equations for the velocity components, by combin-
ing the approaches introduced by Morinishi et al. [15,18]. For instance, after multiplying the convective term
for the first component of the velocity vector by the first velocity component, we shall obtain
J
1f1 u1ðdiv-nÞx1

¼
X3

i¼1

Xn=2

l¼1

al
dð2l�1Þ

dð2l�1Þfi

J
hi

gi

� �nthf1 gu1u1
ð2l�1Þfi

" # !
þ 1

2
u2

1ðcont-nÞnthf1
; ð23Þ
where a new interpolation operator has been introduced, which is defined as
f/wnf1ðf1; f2; f3Þ ¼
1

2
/ðf1 þ n=2; f2; f3Þwðf1 � n=2; f2; f3Þ þ

1

2
/ðf1 � n=2; f2; f3Þwðf1 þ n=2; f2; f3Þ: ð24Þ
As in the case of constant density, the convective term of the momentum equation will discretely conserve ki-
netic energy only if the continuity equation is exactly satisfied.

On the other hand, the pressure term differs significantly from the case of constant density and further anal-
ysis is required. Morinishi et al. [15] introduced an interpolation scheme in order to rewrite the pressure term
J
1f1 uiðpres-nÞxi

¼
Xn=2

l¼1

alui
dð2l�1Þp
dð2l�1Þfi

ð2l�1Þfi

ð25Þ

¼
Xn=2

l¼1

al
dð2l�1Þ

dð2l�1Þfi
ðui�pð2l�1ÞfiÞ � p

dnth

dnthfi

J
hi

ui

� �
: ð26Þ
With this new interpolation operator, it is straightforward to see that the pressure term conserves kinetic
energy in the case of constant density. However, in the case of variable density, the last term is not zero
as the continuity equation does not imply a divergence free velocity field. This pressure-dilatation term
(�pr � u) is of course physical, since it exists also in the continuous transport equation for kinetic energy.
It represents the energy transfer between the kinetic energy and the internal energy through the work of
pressure in the presence of dilatation. It should be noted however that no equation is solved for the internal
energy, therefore there exists no counterpart to the pressure-dilatation term. As a result, numerical errors in
kinetic energy may be able to accumulate through this term. This phenomenon, referred to as spurious heat
release [10], is caused by the discrete discrepancy that exists between the continuity equation (Eq. (1)) and
the scalar transport equation (Eq. (5)), as will be discussed in further details in Section 3.8.3. This issue is
caused by the combined effects of the high order formulation and the variable density aspect of the flows
considered.
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3.8. Test cases

Numerical tests are conducted to check that adequate order of accuracy as well as conservation properties
are obtained.

3.8.1. High order accuracy

In order to verify the correct behavior of the numerical scheme, the order of accuracy is evaluated by con-
vecting a circular vortex inside a two-dimensional unit box ½�0:5; 0:5� � ½�0:5; 0:5� with periodic boundary
conditions. The initial velocity field is given by
Fig. 5.
(dotted
uðx; yÞ ¼
1� y

2
e�ðx

2þy2Þ=a2

x
2
e�ðx

2þy2Þ=a2

 !
; ð27Þ
where the value of a is set to 0.2. The mesh is uniform in the y direction, but has stretching in the x direction.
The mesh is given as x ¼ x0 þ sx sinð2px0Þ, where x0 is uniform in ½�0:5; 0:5�. The value of sx is set to 0:15, lead-
ing to very strong stretching. The simulation is performed at a constant CFL number of 0:01 for one time unit,
when the vortex should be back at its original location, and the L1 norm of the error between the computed
axial velocity and the exact solution is evaluated. The results of this test case are shown in Fig. 5, demonstrat-
ing that the expected orders of accuracy are recovered.

3.8.2. Constant density energy conservation

It has already been shown that mass and momentum conservation are obtained in the case of periodic
boundary conditions. Furthermore, it has been shown that the kinetic energy in the system even for non-uni-
form meshes should be discretely conserved as long as the continuity equation is satisfied. In order to verify
this for the presented scheme, a three-dimensional computation is performed in a unit box discretized on a 163

mesh, stretched in a similar way as for the vortex convection problem. The velocity field is initialized with uni-
form random numbers between �1 and 1, and projected to satisfy the divergence-free constraint. The time step
size is set to Dt ¼ 0:002. The evolution of the kinetic energy in the system is shown for two different time inte-
gration schemes, namely a second order explicit Runge–Kutta scheme and the semi-implicit second order
Crank–Nicolson scheme presented in Section 3.6. Fig. 6 shows that the Crank–Nicolson scheme conserves
kinetic energy, as expected. Interestingly, it can be observed that the higher the spatial order of accuracy,
the faster the energy growth in time for the case of the second order Runge–Kutta scheme. As the spatial dis-
cretization already conserves kinetic energy, it appears important to use a time discretization that preserves
this property to ensure a correct long time behavior of the solution even for high orders of accuracy. As a
consequence, the Crank–Nicolson time advancement will be used in all the following test cases.
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3.8.3. Variable density energy conservation

The discrete conservation of kinetic energy should also be satisfied even in the case of variable density. To
verify this property, additional computations are performed in a unit box discretized on a 323 mesh. A turbu-
lent velocity field with a Taylor microscale Reynolds number of about 33 is achieved by a linear forcing pro-
cedure [29]. The initial eddy turn-over time is s0 ¼ 6:1. A mixture fraction (Z) scalar field is initialized between
0 and 1 according to the procedure proposed by Eswaran and Pope [30]. Finally the density field is computed
from the mixture fraction field using an equation of state corresponding to two miscible fluids
qðZÞ ¼ 1

aZ þ b
: ð28Þ
The simulations were performed with a density ratio of 10 (a ¼ 9, b ¼ 1), a second order discretization for the
convective and viscous part of the momentum equation, and a fifth order WENO scheme for the scalar trans-
port equation. This first simulation is performed with both kinematic viscosity and diffusivity kept constant
(Pr ¼ 1). Fig. 7 shows the time evolution of the kinetic energy in the domain. As expected, the kinetic energy
follows a power law decay in time. The computation is restarted from t ¼ 5 without viscosity and diffusivity to
characterize the conservation properties of the different spatial discretizations. The variation in the total ki-
netic energy shown in Fig. 7(a) and (b) is small when compared to its decay in the presence of viscosity
and diffusivity. The remaining variations may come from two contributions, namely the time integration er-
rors or the pressure-dilatation term. In the latter case, the difference should correspond to an energy exchange
with the internal energy. To quantify this energy transfer, an additional equation for the total internal energy
is solved by
dEint

dt
¼ pr � u; ð29Þ
and the resulting reconstructed change in internal energy is presented in Fig. 7(c). As observed in Fig. 7(d), the
total energy defined as the sum of kinetic energy (K) and internal energy (Eint) is nearly constant throughout
the simulations for the three orders of accuracy (second, fourth, and sixth) tested. It can thus be inferred that
the contribution from the temporal errors is very small, and that most of the kinetic energy variation can be
explained by the effect of the pressure-dilatation term.

However, in this particular case, the pressure dilatation term arises only in the discrete equations. Indeed, in
the absence of scalar diffusion, the scalar transport equation reads
oqZ
ot
þr � ðquZÞ ¼ 0: ð30Þ
Together with the continuity equation (Eq. (1)) and the equation of state (Eq. (28)), one can show that
r � u ¼ 0: ð31Þ
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As a result, under these circumstances, the total kinetic energy should remain constant and there should be no
energy transfer to internal energy through the pressure-dilatation term. Nevertheless, as the discrete forms of
the continuity equation and the scalar transport equation are different, Eq. (31) will not be satisfied discretely.
This discrete discrepancy comes from using different operators for the divergence in the continuity and scalar
transport equations, as well as different operators for the interpolation of the scalar and the density. This can
be observed in the fact that the transfer to internal energy is larger for sixth and fourth order than it is for
second order, as the discrete divergence operators corresponding to these orders of accuracy differ more
strongly from the second order divergence operator used in conjunction with WENO-5. As a result, to limit
the contribution from this spurious heat release, one should choose the scalar transport scheme such that the
same divergence operator is used for the continuity and for the scalar transport equation. This conclusion
could suggest that full finite difference schemes (such as HOUCn

FD) are better suited for high order variable
density simulations. However, as presented in Table 1, their global stencil size is larger, and it is more chal-
lenging to achieve boundedness of the scalar with such schemes. Considering that the spurious heat release
observed in this case is very small, schemes such as third and fifth order WENO and HOUCn

FV will be
preferred.

4. Boundary conditions treatment

4.1. Global conservation

In the case of non-periodic boundary conditions, local conservation does not imply global conservation,
and therefore global conservation properties need to be redefined. With local conservation already satisfied,
Morinishi et al. [15] defined global conservation through the relation
XNi

k¼1;

ðhiÞk
d/
dxi

����
k

¼ /Niþ1=2 � /1=2; ð32Þ
where N i is the number of points in the ith direction. This property is the discrete equivalent to Green’s the-
orem, and this condition is the basis of the boundary condition treatment proposed here.
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Only boundary conditions corresponding to walls (slip and no-slip) as well as other Dirichlet conditions,
such as inflow and convective outflow conditions [31,9], are treated in this paper. The different operators
for interpolation and differentiation will be modified to account for boundaries in such a way that quantities
outside the physical domain are never used. Primary conservation of mass and momentum will be discussed
next.

4.2. Mass conservation

In a low-Mach number formulation, the pressure field is computed as the solution of a Poisson equation.
The best boundary condition for the pressure is the application of zero normal gradients [32]. As a conse-
quence, the volumetric integral of the pressure Laplacian is analytically zero
Fi
Z
V

DP dV ¼
I

dV
rP � dS ¼ 0: ð33Þ
To ensure that the equation solved for the pressure has a solution, its right hand side should verify the same
condition. For instance, in a fractional step formulation, the Poisson equation is
DðdP Þ ¼ 1

Dt
ðcont-nÞ: ð34Þ
As a consequence, the volumetric integral of the continuity equation has to be analytically zero. The discrete
form of this condition,
X

x1;x2;x3

Jðcont-nÞ ¼ 0; ð35Þ
ensures global mass conservation and is mandatory for low-Mach number formulations. This aspect is funda-
mental: if Eq. (35) is not satisfied, the Poisson equation for the pressure has no mathematical solution, since its
right hand side is not in the image of the Laplacian operator. This and Eq. (32) define the necessary conditions
that the divergence operator of the continuity equation has to satisfy.

While these properties are inherent to the second order formulation, a special treatment has to be derived
for higher order formulations. As long as a divergence operator requires a velocity value outside the
domain, Eq. (32) is not satisfied. For instance, a fourth-order divergence operator requires information
about one point outside the domain and a sixth order formulation requires two values, which is shown
in Fig. 8. To alleviate the problem arising in the fourth order formulation, Morinishi et al. [18] have pro-
posed to compute the value for this outside point by using linear extrapolation with points inside the
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g. 8. Definition of the procedure to update the divergence operator to ensure mass conservation (illustrated for sixth order).
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domain. They have shown that this discretely conserves mass. However, this approach cannot be easily
extended to order higher than four.

In this paper, we propose a more general approach which can be derived for any order of accuracy. The
differentiation operator given by Eq. (18) is expressed as a weighted linear combination of values at different
grid points. In fact, Eq. (32) states that these weights add up to zero at every grid point in the domain except
for the boundaries where their sums are either equal to +1 or �1, as shown in Fig. 8. This condition alone
ensures discrete mass conservation.

Following this observation, the weights of the divergence operator corresponding to points outside the
domain will be nullified, while the weights inside the domain will be adjusted to verify Eq. (32). Fig. 8 illus-
trates this procedure for the case of sixth order. If n is the order of the formulation, one can show that n=2
weights would have to be changed for n=2� 1 divergence operators. As the condition derived from Eq.
(32) only specifies n=2 independent constraints (one for each grid point), the determination of the updated
weights is not unique. The weights are then chosen so as to optimize the order of accuracy of the divergence
operators. This method is applied in such a way that the order of accuracy of the gradient normal to the wall
increases with distance to the wall. The weights for the divergence operator have been precomputed for fourth
and sixth order discretization and are available in Table 2 with the order of accuracy corresponding to the
evaluation of the different quantities. Only the case of a boundary on one side is presented. It is straightfor-
ward to derive the divergence operators for the other side. It should be observed that in the case of fourth
order discretization, the current procedure recovers the result proposed by Morinishi et al. [18].

As the normal velocity at a wall is zero, Eq. (35) is already satisfied. In the case of inflow/outflow condi-
tions, the total mass flux leaving the domain should be exactly equal to the total mass flux entering the
domain. For example, this could be done by adjusting the mean velocity at the outlet before solving the Pois-
son equation [33].

4.3. Momentum conservation

While global mass conservation is mandatory for low-Mach number formulations, global conservation of
momentum might be relaxed. In fact, one might just use a simple procedure where velocities outside the
domain are set to zero in the case of walls and to their corresponding values in case of inflow/outflow Dirichlet
conditions. However, this procedure would not be very accurate. Furthermore, if exact conservation of
momentum is preferred, a new procedure has to be derived. Morinishi et al. [15] proposed a method that dis-
cretely conserves momentum for fourth order accurate formulations by prescribing the flux at the single point
outside of the physical domain. However, this approach cannot be easily extended to higher than fourth order,
as different evaluations of the fluxes are required at the same point for higher order schemes.

To ensure that Eq. (32) is verified, the divergence and interpolation operators that appear in the momentum
equation (Eq. (2)) have to be changed. The procedure will be outlined for the fourth order accurate discret-
ization of the term dðquxuyÞ=dx for the uy velocity component (Fig. 9). A similar procedure would be used for
the treatment of the other convective terms. In the discretization of the momentum equation (Eq. (16)), the

fluxes are constructed as the product of a full order interpolation of the momentum ðð J
hx

gxÞ
4thfy Þ and a second

order interpolation of the velocities with variable stencil sizes ðuy
ð2l�1ÞfxÞ. The procedure to ensure global con-

servation of momentum can be decomposed as follows:
Table 2
Weights for the mass conserving nth order interpolations

n Weights Effective order

Outside Inside

4 – 0 �a1 � 2
3 a2 a1 þ 1

3 a2
1
3 a2 – – – 1

4 – – � 1
3 a2 �a1 a1

1
3 a2 – – 4

6 0 0 �a1 � 2
3 a2 � 1

5 a3 a1 þ 1
3 a2 � 2

5 a3
1
3 a2 þ 2

5 a3
1
5 a3 – – 1

6 – 0 � 1
3 a2 � 3

5 a3 �a1 þ 3
5 a3 a1 � 1

5 a3
1
3 a2

1
5 a3 – 2

6 – – � 1
5 a3 � 1

3 a2 �a1 a1
1
3 a2

1
3 a3 6
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� First, the size of the stencil used for the second order interpolations is changed as to avoid looking for a
value outside of the physical domain. In Fig. 9, this is done for the flux evaluated at the point
ðx; yÞ ¼ ð1; 2Þ for which the interpolation uy

3fx is replaced by uy
1fx .

� Second, the momentum values used in the interpolation are set to zero for values outside the physical
domain, as the normal velocity to the wall is always zero.
� Finally, the fluxes outside the domain are evaluated using second order extrapolation from values at the

wall and inside the domain. For instance, the flux at the point ðx; yÞ ¼ ð�1; 4Þ would be written as
f jð�1;4Þ ¼ 2 � J
hx

gx

� �nthfy
�����
ð0;4Þ

� ubc
y �

J
hx

gx

� �nthfy
�����
ð1;4Þ

� uy
1fx
��
ð1;4Þ; ð36Þ
where ubc
y would be zero for a wall.

The treatment of the pressure gradient is simpler because of its linear nature. In fact, the same procedure pre-
viously proposed for the divergence operator of the continuity equation is applied to the differentiation oper-
ator used for the pressure gradient (Table 2). Furthermore, a zero normal pressure gradient is enforced when
evaluated at the boundary interface.

4.4. Energy conservation in an inviscid channel

The proposed boundary conditions were developed to ensure exact primary conservation (mass and
momentum). To analyze their impact on the conservation of energy, the simulation of Section 3.8.2 is repeated
with no-slip walls in the y direction. The same stretched mesh is used for the simulation. Fig. 10 compares the
temporal evolution of the total kinetic energy for different orders of accuracy. The second order formulation
recovers the energy conservation obtained in Section 3.8.2. On the other hand, the total kinetic energy
increases for the fourth and sixth order formulations. However, this energy increase remains limited, and is
found to be of the same order than the second order temporal errors obtained in Fig. 6 with the Runge–Kutta
time integration scheme. Furthermore, in the presence of viscosity, the velocities at the wall would be zero,
thus reducing even further the energy increase due to the proposed boundary treatment. In realistic configu-
rations, such an increase in kinetic energy is expected to have very little effect on the overall solution, as will be
shown for several wall-bounded flows in Section 7.
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5. Centerline treatment

5.1. Singularity at the axis

In cylindrical coordinates, the Navier–Stokes equations present a singularity at the axis (r ¼ 0) as the
inverse of the radius appears in some of the terms of the continuity and momentum equations. Morinishi
et al. [18] have already shown that this singularity is not physical, but rather originates from the coordinate
system. For instance, the equation for the radial component of the velocity on the axis can be transformed to
remove the singularity. For an inviscid flow, this would yield:
oqur

ot
þ oquxur

ox
þ o

or
2qurur þ

oquruh

oh
� quhuh

� �
þ op

or
¼ 0: ð37Þ
Furthermore, because of the coordinate transformation, the evaluation at the axis of some of the quantities is
single-valued, while others are multi-valued. For example, the radial and azimuthal velocities are multi-valued
at the axis since
urðx; 0; hÞ ¼ uyðx; 0Þ cos hþ uzðx; 0Þ sin h; ð38Þ
uhðx; 0; hÞ ¼ �uyðx; 0Þ sin hþ uzðx; 0Þ cos h; ð39Þ
where uy and uz represent the two components of the velocity vector in a cartesian frame of reference. Any
discrete formulation should ensure that both equations are satisfied.

5.2. Radial velocity on the axis

Because of the staggering arrangement of the components of the velocity vector inherent to the discrete
formulation presented in Section 3, only the radial velocity is located exactly on the axis. To avoid the
resulting singularity, several treatments have been proposed where the radial velocity at the axis is recon-
structed from some off-axis values of velocity components [34,35,18]. All of these treatments are based
on an equation equivalent to Eq. (38) and assume that the multi-valued radial component of the velocity
vector can be expressed as
urðx; 0; hkþ1=2Þ ¼ uyðx; 0Þ cos hkþ1=2 þ uzðx; 0Þ sin hkþ1=2: ð40Þ
Several expressions have been formulated for uy and uz as averages over the h direction of the radial velocity or
the azimuthal velocity or a combination of both. As the value of the radial velocity at the axis only appears in
the convective and the viscous terms of the equations for the radial velocity, the formulation proposed by
Morinishi et al. [18] is retained:
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uyðx; 0Þ ¼
2

N h

XNh�1

k¼0

urðx; r1; hkþ1=2Þ cos hkþ1=2; ð41Þ

uzðx; 0Þ ¼
2

N h

XNh�1

k¼0

urðx; r1; hkþ1=2Þ sin hkþ1=2; ð42Þ
where r1 is the radius of the first off axis radial velocity. Using the series expansion at the axis proposed by
Constantinescu and Lele [36] for the radial velocity, one can show that the velocity thus reconstructed is sec-
ond order accurate in the radial direction. However, since the value for the velocity is obtained by interpola-
tion of other velocities, strict conservation of energy cannot be shown. In fact, Morinishi et al. [18] have
already shown that the kinetic energy increases for purely inviscid flows.

Recently, Morinishi et al. [18] have formulated a discrete equation for the radial velocity at the axis, which
discretely conserves kinetic energy. As for the velocity reconstruction, this equation is also second order accu-
rate in the radial direction.

5.3. On the other side of the axis

The original discrete formulation of the Navier–Stokes equations by Morinishi et al. [18] was only second
order accurate in the radial direction. As for simple pipe or jet flows most velocity gradients are found in this
direction, it is worth considering increasing the order of accuracy in this direction. However, as the order of
accuracy increases, the length of the stencil increases, and more and more points on the other side of the axis
will have to be used. The concept of using information on the other side of the axis was proposed in the con-
text of second order schemes by Eggels et al. [34], and used also for example by Verzicco and Orlandi [12].

Constantinescu and Lele [36] have already shown that necessary values at negative radius can be expressed
as simple functions of values found at positive radius. For instance, they pointed out that:
uxðx;�r; hÞ ¼ uxðx; r; hþ pÞ;
urðx;�r; hÞ ¼ �urðx; r; hþ pÞ;
uhðx;�r; hÞ ¼ �uhðx; r; hþ pÞ:

ð43Þ
In the discrete formulation presented in Section 3, other quantities are also required for points across the axis.
Following the same methodology, one can show that the scaling factors as well as the Jacobian satisfy similar
symmetry or anti-symmetry conditions:
hxðx;�r; hÞ ¼ Dx ¼ hxðx; r; hþ pÞ;
hrðx;�r; hÞ ¼ Dr ¼ hrðx; r; hþ pÞ;
hhðx;�r; hÞ ¼ �rDh ¼ �hhðx; r; hþ pÞ;
Jðx;�r; hÞ ¼ �rDrDxDh ¼ �Jðx; r; hþ pÞ:

ð44Þ
The last relation is different from the relation used by Morinishi et al. [18] in their derivation of the equation
for the radial velocity at the axis, where the Jacobian was given as
Jðx;�r; hÞ ¼ Jðx; r; hþ pÞ: ð45Þ

However, the expression for the Jacobian in Eq. (45) cannot be used for higher order formulations of the terms
in the radial directions, as it would introduce numerical errors in the divergence of the velocity field close to
the axis. This can be clearly illustrated with the example of a uniform flow of unity velocity magnitude char-
acterized by
urðx; r; hÞ ¼ þ cos h;

uhðx; r; hÞ ¼ � sin h:
ð46Þ
With Eq. (44), the fourth order accurate evaluation of the continuity equation (Eq. (18)) at the center of the
first off-axis cell ðx; r1=2; hÞ takes the form
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ðcont-n-antisymÞ ¼ 1

r1=2

ða1 þ a2 � 1þOðDh4ÞÞ cos h; ð47Þ
which is indeed fourth order accurate since a1 þ a2 ¼ 1 (Eq. (12)). On the other hand, with Eq. (45), the con-
tinuity equation becomes
ðcont-n-symÞ ¼ 1

r1=2

a1 þ
a2

3
� 1þOðDh4Þ

� �
cos h; ð48Þ
which introduces a constant error in the continuity equation.

5.4. Test case

To assess the stability and accuracy of the possible treatments of the axis as well as the higher order for-
mulations, a Lamb vortex [37] is convected in a cylindrical configuration across the axis. This configuration,
which corresponds to a dipole vortex inside a circle of unity radius surrounded by a potential flow, was first
presented by Verzicco and Orlandi [12]. The two-dimensional configuration consists of a disk with radius
R ¼ 2:5 with an initial vortex centered around ðr; hÞ ¼ ð1; 0Þ. For a vortex centered on the axis, the velocity
components are given by the expressions
ur ¼
U C J1ða1rÞ

a1r � 1
� �

cos h for r < 1;

� U
r2 cos h for r > 1;

8<: ð49Þ

uh ¼
U 1� C J 0ða1rÞ � J1ða1rÞ

a1r

� �� �
sin h for r < 1;

� U
r2 sin h for r > 1;

8<: ð50Þ
where C ¼ 2
J0ða1Þ

, with J 0ðrÞ and J 1ðrÞ the Bessel functions of the first kind and a1 the first root of the Bessel

function (J 1ða1Þ ¼ 0). The vortex advects itself at the speed U. The expressions for an off axis vortex can easily
be derived.

A first simulation is performed on a uniform mesh with resolution Nx � N r � N h ¼ 1� 64� 64 to assess the
conservation properties as well as the overall accuracy of the schemes. The timestep used for those simulations
is taken to be Dt ¼ 5� 10�4, which corresponds to a maximum convective CFL condition in the azimuthal
direction of 0:48, and which is small enough to avoid temporal errors. Fig. 11 shows the time history of
the kinetic energy in the domain for various pole treatments and scheme orders. As expected, the solution
of the equation for the radial velocity at the axis proposed by Morinishi et al. [18] assures perfect discrete con-
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1. Temporal evolution of the kinetic energy for the convection of a Lamb vortex for different pole treatments in cylindrical
nates: second order (solid line) and fourth order (dashed line) with second order velocity reconstruction; second order with the axis
on of Morinishi et al. [18] (dash-dotted line).
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servation of kinetic energy, while a reconstruction of the radial velocity by interpolation does not ensure strict
conservation of kinetic energy. It is also to be noted that in this particular case, the kinetic energy fluctuations
are smaller for higher order discretization. To better analyze the accuracy of the different pole treatments, con-
tours of the vorticity magnitude are created as the vortex crosses the axis (Fig. 12). While the velocity recon-
struction method does not conserve kinetic energy, it still shows good accuracy when compared to the exact
solution. Increasing the order of accuracy leads to a small improvement of the results as the first order errors
are mostly produced by the centerline treatment. The comparison has also been done for the pole treatment
proposed by Morinishi et al. [18]. The solution of the discrete equation for the radial velocity at the axis intro-
duces some disturbances upstream of the vortex and alter significantly the vorticity contours at the pole. By
using a Taylor expansion in the radial direction, it can be shown that the discrete equation solved at the axis
has the following limit:
oqur

ot
þ oquxur

ox
þ o

or
qurur þ qur

ouh

oh
� quhuh

� �
þ ur

oqur

or
þ op

or
¼ 0: ð51Þ
This equation differs significantly from Eq. (37) which should be the analytical equivalent for any equations
for the radial velocity at the axis. These errors produced in a very small region of the domain might not affect
the overall accuracy of the formulation in fully turbulent flows. However, it is preferable to ensure at least first
order convergence everywhere in the domain in order to obtain that the numerical errors decrease with the
mesh size. As a result, the choice was made to use the second order velocity reconstruction at the axis instead
of enforcing strict energy conservation by solving the equation proposed by Morinishi et al. [18].
Fig. 12. Contours of vorticity magnitude for the convection of a Lamb vortex in cylindrical coordinates.



Finally a more thorough accuracy analysis has been performed by varying the mesh size. First, a solution is
computed on a very fine mesh with N x � Nr � N h ¼ 1� 512� 512. This solution is assumed to represent ade-
quately the exact solution. Several runs are then performed with the second order accurate formulation with
varying mesh sizes. Because of the semi-implicit nature of the time integration scheme, the computations are
conducted with a maximum CFL condition in the azimuthal direction of 5. Fig. 13 shows the L2 and L1 norms
for the radial and the azimuthal velocities. Both norms for both components show nearly perfect second order
accuracy for the simulation. Since the axis treatment is only second order accurate, and the test case puts the
emphasis on the centerline itself, the higher order accurate formulations will not display better than second
order accuracy. However, in realistic cases where the centerline does not play such a major role, we do not
expect the limited accuracy at the axis to degrade the quality of the solution significantly, and therefore we
should be able to fully benefit from the high order accuracy.

6. Viscous formulation

In order to consistently reduce the spatial discretization errors when solving the Navier–Stokes equations,
the order of accuracy of the viscous terms should also be increased. However, no aliasing errors will be gen-
erated by these terms, since they are linear in velocity. Moreover, because of their dissipative nature, the vis-
cous part of the Navier–Stokes equation does not typically lead to stability issues, and therefore it is more
easily discretized than the convective part. Thus, a straightforward methodology for computing high order
accurate viscous terms based on Lagrange polynomials will be presented here.

6.1. Numerical discretization

To consistently obtain high order accuracy on non-uniform meshes, we introduce a different set of discrete
operators than for the convective terms, based on a local Lagrange polynomial representation of the quantity
on which the operators have to be applied. In order to obtain an nth order accurate interpolation or differen-
tiation of a quantity / at a location x in the direction xi, an ðn� 1Þth order Lagrange polynomial P is fitted
through the n data points available in the stencil. Note that this operation is centered in computational space,
meaning that the interpolation or differentiation of / is computed with as many stencil points on one side of
the evaluation point than on the other. The interpolation is written
�/
nthxi ¼ P ðxÞ; ð52Þ
while the differentiation is expressed by
dnth/
dnthxi

¼ P 0ðxÞ: ð53Þ
10
-3

10
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Note that we use the physical space in the notations, to differentiate these operators from the convective oper-
ators. Since all calculations are performed in physical space directly, high order accuracy is ensured even on
non-uniform meshes. Note that these operators are all linear in /, meaning that they can be pre-computed
initially and stored at every mesh location in order to save computational time. With these operators defined,
the divergence of the velocity vector based on the viscous metrics can be introduced as
ðvisc-div-nÞ ¼ dnthu1

dnthx1

þ 1

b
dnthðbu2Þ

dnthx2

þ 1

b
dnthu3

dnthx3

; ð54Þ
where b is one in cartesian coordinates and x2 in cylindrical coordinates. The viscous term in the Navier–
Stokes equation is then written
ðvisc-nÞx1
¼ dnth

dnthx1

2l
dnthu1

dnthx1

� 1

3
ðvisc-div-nÞ

� �� �
þ 1

b
dnth

dnthx2

bl2ndx1
2ndx2 dnthu1

dnthx2

þ dnthu2

dnthx1

� �� �
þ 1

b
dnth

dnthx3

l2ndx1
2ndx3 1

b
dnthu1

dnthx3

þ dnthu3

dnthx1

� �� �
; ð55Þ

ðvisc-nÞx2
¼ dnth

dnthx1

l2ndx1
2ndx2 dnthu2

dnthx1

þ dnthu1

dnthx2

� �� �
þ 1

b
dnth

dnthx2

2bl
dnthu2

dnthx2

� 1

3
visc-div-nð Þ

� �� �
þ 1

b
dnth

dnthx3

l2ndx2
2ndx3 1

b
dnthu2

dnthx3

þ dnthu3

dnthx2

� � 1

b
u3

nthx2

� �� �
ð56Þ

� � 1

b
2l

1

b
dnthu3

dnthx3

� 1

3
visc-div-nð Þ þ � 1

b
u2

nthx2

� �� �nthx2

;

ðvisc-nÞx3
¼ dnth

dnthx1

l2ndx1
2ndx3 dnthu3

dnthx1

þ 1

b
dnthu1

dnthx3

� �� �
þ 1

b
dnth

dnthx2

bl2ndx2
2ndx3 dnthu3

dnthx2

þ 1

b
dnthu2

dnthx3

� � 1

b
u3

nthx2

� �� �
þ 1

b
dnth

dnthx3

2l
1

b
dnthu3

dnthx3

� 1

3
ðvisc-div-nÞ þ � 1

b
u2

nthx2

� �� �
þ � 1

b
b�l2ndx2

2ndx3 dnthu3

dnthx2

þ 1

b
dnthu2

dnthx3

� � 1

b
u3

nthx2

� �� �nthx2

: ð57Þ
6.2. Centerline treatment

The b coefficient equals x2 in cylindrical coordinates, meaning that a singularity arises in the discretization
of the viscous term when 1=r is evaluated at the centerline. In Eq. (55), this is never the case, since 1=r always
appears off-axis as a result of the staggered variable arrangement. Similarly, in Eq. (56) the situation does not
arise because the ur velocity at the axis is obtained through a different procedure, as explained in Section 5. On
the other hand, in Eq. (57), 1

r
dnthur
dnthh � 1

r uh
nthr is evaluated twice on the axis. However, on the centerline, the ur

and uh velocity components are related by
1

r
our

oh
¼ uh

r
; ð58Þ
meaning that
1

r
dnthur

dnthh
� 1

r
uh

nthr ¼ 0: ð59Þ
With this property, the singularity at the centerline can thus be removed by ensuring that when r ¼ 0, 1=b is
set to zero explicitly.

6.3. Boundary conditions

The strategy that was chosen to handle viscous boundary conditions differs significantly from that of the
convective terms. In order to maximize the order of accuracy close to the boundaries, the operators that were
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introduced for the viscous terms are upwinded to ensure that no point outside the physical domain is reached.
The overall strategy is therefore to discard all stencil points that are outside the physical domain, and to con-
struct upwinded operators from a Lagrange polynomial of the highest possible order given the available stencil
points. For instance, as illustrated in Fig. 14 for fourth order, the evaluation of the polynomials (Eqs. (52) and
(53)) at the point ðx; yÞ ¼ ð0; 3Þ are using two values inside the domain in addition to the boundary value itself
whenever available. This methodology allows for an optimal accuracy close to the boundary, while ensuring
that no outside value is ever used, which greatly simplifies the implementation of three-dimensional complex
walls.

6.4. Decay of a Taylor–Green vortex

In order to verify the correct behavior of the proposed scheme for the viscous terms of the Navier–Stokes
equations, the viscous dissipation of a two-dimensional Taylor–Green vortex inside a periodic box of size 2p
has been simulated. The initial velocity is given by
Fig. 14
order)
uðx; yÞ ¼
cosðxÞ sinðyÞ
� sinðxÞ cosðyÞ

� �
: ð60Þ
The mesh is uniform in the y direction, but has stretching in the x direction. If x0 is uniform in ½0; 2p�, the mesh
is defined as x ¼ x0 þ sx sinðx0Þ. The value of sx is set to 0:5, leading to very strong stretching. The viscosity is
set to m ¼ 1� 106 to make sure that the numerical errors due to the convective terms are negligible in com-
parison to the viscous errors. In order to ensure that the numerical errors due to the time integration remain
low, a time step size of Dt ¼ 5� 10�10 is chosen, leading to a viscous CFL number consistently below 0:2. The
ratio CN between the kinetic energy in the system at time t ¼ 5� 10�8 and the initial kinetic energy is com-
pared to its analytical value CA and the error is plotted in Fig. 15. Two different cases have been tested, namely
the full viscous formulation presented in the beginning of Section 6, shown in Fig. 15(a), and a similar formu-
lation where the definition of the divergence operator used in the continuity equation (Eq. (18)) has been mod-
ified to match the divergence operator used in Eq. (54), shown in Fig. 15(b).

While the modified formulation displays the expected order of accuracy, the formulation with the unmod-
ified divergence remains second order accurate, although the errors are greatly reduced by increasing the order
of accuracy. This second order error is introduced when the dilatational part of the velocity gradient tensor is
velocity used
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removed with a divergence operator that does not match the one used to enforce continuity. For an incom-
pressible flow, we expect that r � u ¼ 0 discretely, however ðvisc-div-nÞ obtained by Eq. (54) will not be dis-
cretely zero. While this specific issue is interesting to notice, it is not expected to affect the quality of the
results, since a significant reduction of two orders of magnitude is still obtained for the spatial discretization
errors with the proposed formulation. Note also that in the absence of mesh stretching, the two divergence
operators are discretely similar, therefore this problem does not arise.

7. Simulations of canonical flows

In this last section, the arbitrarily high order accurate methods presented before are employed to simulate a
range of canonical flows. The focus is mainly to study the influence of the order of the numerical schemes on
the solution. This influence will be evaluated by considering the classical quantities characterizing the flow
statistics.

7.1. Homogeneous isotropic turbulence

For the first case, homogeneous isotropic turbulence is simulated by means of DNS and LES, conducted
using the second, fourth, and sixth order schemes. The first simulation is for homogeneous isotropic turbu-
lence forced linearly by the method proposed by Lundgren [29]. The Taylor Reynolds number is approxi-
mately 50, and the turbulence is resolved with kmaxg > 1:5, where kmax is the highest resolved wavenumber
and g is the Kolmogorov scale, as suggested by Yeung and Pope [38]. Note that this is the DNS case 3c per-
formed by Rosales and Meneveau [39]. Fig. 16(a) shows the nondimensional energy spectra obtained with the
three numerical schemes used. It can be observed that for the three schemes the spectra are in excellent agree-
ment with the results obtained by Rosales and Meneveau [39] with a spectral code. It seems however that the
dispersive errors at the smallest resolved scale for the second order lead to a weak over-prediction of the
energy at these scales. In the context of DNS, this does not appear to be a significant issue, since most of
the energy dissipation occurs at larger scales.

The LES case is for decaying isotropic turbulence simulated on a 323 mesh using a classical dynamic sub-
grid-scale model [41,42]. Note that for all the simulations in this paper, the evaluation of the velocity gra-
dient tensor for the sub-grid scale model is performed with a second order accurate method, regardless of
the order of accuracy used for the convective and viscous terms. The physical parameters are chosen to
match the experiment of Comte-Bellot and Corrsin [40], and the initial field is constructed to have the
three-dimensional energy spectrum of the experimental measurements at the first of the three measured
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times. The energy spectrum at these three times is plotted in Fig. 16(b) for second, fourth, and sixth order.
It can be observed that at the smallest resolved scales, which are much more energetic in the case of LES
than for DNS, the numerical errors become noticeable. Indeed, the spectra in the second order case slightly
over-predicts the energy on a significant part of the inertial sub-range. This would suggest that one should
avoid using the second order accurate formulation for testing sub-grid scale models. These results are in
agreement with the observations of Ghosal [43] and Chow and Moin [44]. Note that, even though there
are noticeable differences between second and fourth order, results from sixth and fourth order are very
close to each other. In our numerical experiments, we also observed that contributions from viscous and
convective errors were of the same order.

7.2. Vortex ring colliding with a wall

To evaluate the impact of the proposed boundary conditions on the overall accuracy of the scheme, a vor-
tex ring colliding with a wall is simulated. Following the numerical test of Verzicco and Orlandi [12], this sim-
ulation is performed in cylindrical coordinates using a two-dimensional axisymmetric domain of size
Lx � Lr ¼ 4� 4, closed at x ¼ 0 by a wall. Slip boundary conditions are applied at x ¼ 4 and r ¼ 4. A thin ring
of initial Gaussian vorticity is placed at a height x0 ¼ 2 from the wall. The toroidal radius of the ring is set to
r0 ¼ 1, leading to the following expression for the initial velocity field:
uðx; rÞ ¼
ux

ur

� �
¼ 1

ps2
ð1� e�s2=a2Þ

r � r0

x0 � x

� �
; ð61Þ
where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðr � r0Þ2

q
is the distance from the center of the ring core. As in [12], we set a ¼ 0:4131

and the viscosity to 3:45� 10�4, leading to a Reynolds number of 2895. The simulation is run with a time step
size Dt ¼ 0:03 until t ¼ 30, when the main vortex ring has generated both a secondary and a tertiary ring. The
azimuthal vorticity contours are shown in Fig. 17 at the final time for second, fourth, and sixth order on a 1282

mesh, as well as for second order on a 5122 mesh. While the second order solution on the coarse mesh is al-
ready satisfactory, as pointed out by Verzicco and Orlandi [12], the solution converges towards the fine mesh
solution as the order of accuracy is increased. To quantify this convergence, the azimuthal vorticity is plotted
as a function of r at x ¼ 0:75 for all four cases in Fig. 18. It clearly appears that the second order solution is
not able to fully capture the peak in vorticity at r ¼ 2:75, while the fourth order solution follows very accu-
rately the fine mesh solution. Interestingly, very small differences are observed between the fourth order solu-
tion and the sixth order solution, indicating that for the given mesh, convergence in the order of the scheme
has almost been achieved. It can be noted that it was observed for this case that the convective order of accu-



Fig. 17. Azimuthal vorticity contours of a vortex ring colliding with a wall at t ¼ 30.
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racy was the most important. In our numerical tests, little improvement was obtained by increasing the order
of accuracy of the viscous term.

7.3. Rayleigh–Taylor instability

The two-dimensional Rayleigh–Taylor instability problem is considered to check the ability of the method
to simulate variable density flows accurately. The configuration consists of two miscible fluids separated by a
horizontal perturbed interface. The heavy fluid (with unity density) is above the light fluid (with density 0:1).
The mean interface is located at y ¼ 0 in a domain size of ½�0:5; 0:5� � ½�0:5; 0:5�. The exact location of the
interface is given by
yintðxÞ ¼ �a
X7

k¼1

cosðxkpxÞ; ð62Þ
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where the amplitude of the sinusoidal waves is a ¼ 0:001 and the wave numbers are xk ¼ 4; 14; 23; 28;
33; 42; 51; 59, following the test case of Nourgaliev and Theofanous [22]. A mixture fraction scalar field is con-
structed as
Fig. 19
(dashe
Zðx; yÞ ¼ 1

2
1þ tanh

yintðxÞ � y
2d

� �� �
; ð63Þ
where the thickness of the interface is d ¼ 0:002. Finally, the density is evaluated from the mixture fraction
using the same equation of state as previously used in Section 3.8.3. The two fluids have identical kinematic
viscosity m ¼ 0:001 and kinematic diffusivity DZ ¼ 0:0005. The value for the gravity acceleration is g ¼ 9 so
that the Reynolds number is Re ¼

ffiffiffiffiffiffiffi
gLy

p
Lx=m ¼ 3000. Simulations have been performed on two different

meshes. A coarse mesh of N x � Ny ¼ 128� 128 has been used for simulations with second, fourth, and sixth
order accurate formulations, while a solution has been obtained on a finer grid of N x � Ny ¼ 512� 512 mesh
points with the second order formulation. The time step size is Dt ¼ 0:001 for the coarse mesh and
Dt ¼ 0:00025 for the fine mesh.

Fig. 19 shows the time evolution of the kinetic energy and the internal energy defined by Eq. (29) for the
four simulations. While the fourth order formulation shows some differences compared to the second order,
the sixth order shows little improvement over fourth order. As previously explained in Section 3.8.3, the
energy transfer to internal energy is caused by the discrepancy between the continuity and scalar transport
equations. In the present simulations, there are two reasons for this discrepancy. The first contribution has
already been described and comes from the numerical discretization. It is grid dependent and its effect
decreases as the grid is refined. The amplitude of this contribution can be assessed by comparing the internal
energy on the coarse and on the fine mesh. The second contribution comes from the scalar diffusion term. It
appears clear that the transfer to internal energy due to the numerical discretization is very small in compar-
ison to the contribution due to the scalar diffusion.

Contour plots of the density are extracted at t ¼ 0:75 for the four simulations (Fig. 20). While the second
order formulation predicts the overall features of the instability, the fourth and sixth order formulations com-
pare more favorably to the solution on the finer mesh. To further quantify these differences, the density profile
at y ¼ 0 is plotted in Fig. 21. The second order formulation, while capturing the overall shape of the density
profile, is unable to correctly predict the dip in density at x ¼ �0:1. Increasing the order of accuracy from sec-
ond to fourth and then to sixth leads to quantitatively better predictions of the density profile.

7.4. Turbulent pipe

To further analyze the influence of higher order discretization on turbulent simulations in the presence of
mean gradients, a turbulent pipe flow is simulated by means of DNS. The configuration was originally inves-
tigated experimentally and numerically by Eggels et al. [34]. The Reynolds number, based on the radius and
the friction velocity, was Res ¼ 180 for the DNS and in the range Res ¼ 183–190 for the experimental setup.
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Fig. 20. Density contours of Rayleigh–Taylor instability at t ¼ 0:75.
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For the DNS, Eggels et al. [34] used a domain of size Lx � Lr � Lh ¼ 10R� R� 2p and a grid resolution of
Nx � Nr � N h ¼ 256� 96� 128 points. Further numerical analysis has been performed by Fukagata and
Kasagi [35] with the same grid resolution but a different numerical discretization. The same grid resolution
has been used for the present simulations, but with different orders of accuracy. The results are compared with
the latest DNS results by Fukagata and Kasagi [35] and the experimental measurements of Eggels et al. [34] in
Fig. 22(a), (c) and (e).
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The mean and the fluctuations of the velocities obtained with both the second and fourth order formu-
lations compare extremely well with the DNS data of Fukagata and Kasagi [35]. The comparison of the
fluctuations of the velocities shows only very little differences for the radial and azimuthal velocities. Also
the skewness profiles of the radial and the axial velocities agree well with the experiments for the fourth
order scheme, while the second order shows some minor deviations, especially in the viscous sub-layer where
a slight over-prediction can be noticed. This over-prediction can also be observed in the second order accu-
rate DNS results of Fukagata and Kasagi [35]. The skewness of the axial velocity in the log-layer is pre-
dicted to be nearly constant (around �0:5) by the second and fourth order formulations in agreement
with the experimental measurements. On the other hand, the DNS data of Fukagata and Kasagi [35] pre-
dicts significantly lower values.

The importance of higher order accuracy is also investigated in the framework of LES. Because of the low
Reynolds number, when simulated on a relatively coarse grid and with low order of accuracy, the flow can
relaminarize [18]. Morinishi et al. [18] have already performed several simulations with different orders of
accuracy for the convective terms in the axial and azimuthal directions. However, the convective term in
the radial direction as well as all diffusion terms remained second order accurate. In the present work, we
intend to analyze the effects of higher order formulations for all convective and viscous terms. Two LES (sec-
ond order and sixth order accurate) were performed using the grid employed by Morinishi et al. [18] with a
resolution of N x � Nr � N h ¼ 48� 64� 48 points. Two sub-grid scale models have been tested, namely a stan-
dard dynamic Smagorinsky model [41,42] and the Lagrangian dynamic sub-grid scale model by Meneveau
et al. [45].

Fig. 22(b), (d), and (f) show the results obtained for the four simulations performed in comparison with the
DNS results of Fukagata and Kasagi [35]. As expected, the sixth order formulation predicts significantly more
accurately the mean and fluctuations of the velocities. The skewness of the radial velocity is greatly improved
by changing the order of accuracy from second to sixth order. These results clearly show that increasing the
order of accuracy of the convective terms in the radial direction as well as all the viscous terms has a significant
impact on the quality of the LES predictions. It should also be noted that the impact of changing the order of
accuracy appears far greater than that of changing the sub-grid scale model. For the given mesh, the Lagrang-
ian model was found to consistently predict the flow with better accuracy than the standard dynamic proce-
dure [41,42]. However, the improvement that can be obtained by changing the sub-grid scale model is limited
in comparison with the effect of increasing the order of accuracy of the numerical schemes, except for the
skewness prediction, where the Lagrangian model performs surprisingly well. To analyze the performance
of sub-grid scale models, the numerical errors due to the spatial discretization should be sufficiently small
[43,44], therefore it appears that the second order formulation should not be used in this case to develop
and analyze models.

7.5. Round jet

Finally, the higher order formulations are applied in an LES of a variable density turbulent jet (Fig. 23).
The configuration, studied experimentally by Amielh et al. [46] and Djeridane et al. [47], corresponds to an
axisymmetric jet at ambient pressure and temperature. Pure helium is injected through a pipe of diameter
Dj ¼ 26 mm at a bulk velocity of Uj ¼ 25 m=s. A slow surrounding co-flow of air is supplied at a bulk velocity
of Ue ¼ 0:9 m=s. The entire configuration is enclosed in a cylindrical vessel of internal diameter De ¼ 285 mm.
The Reynolds number based on the diameter of the helium pipe and the average velocity on the axis
(Uj ¼ 32 m=s) is Rej ¼ 6890. The density ratio between helium and air is about 7:2. The LES is performed
on a grid with a resolution of Nx � Nr � N h ¼ 128� 76� 64 points. The sub-grid scale model used for the
current simulations is the Lagrangian dynamic subgrid-scale model by Meneveau et al. [45] and extended
for variable density and to include the modeling of the turbulent eddy diffusivity by Réveillon and Vervisch
[48]. The fluid properties, such as the molecular viscosity and the molecular diffusivity, as well as the equation
of state, are precomputed and tabulated as a function of mixture fraction. In order to generate the inflow con-
ditions, a periodic cylindrical pipe is first computed. The turbulent velocity field at an x position is stored as a
function of time in order to be re-injected at the entrance of the jet simulation. The computations are per-
formed using the second and fourth order accurate formulations, and compared to the experimental results



Fig. 23. Volumetric rendering of the mixture fraction of helium for the variable density jet.
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in Fig. 24. The rms values of the velocities are non-dimensionalized by using the velocity on the axis (U c). The
radii are non-dimensionalized by using the velocity half width radius (R1=2).

Fig. 24(a) shows that for both second and fourth order, the statistics at the first measurement station
(x=Dj ¼ 0:2) are in excellent agreement with the experimental results. The mean axial velocity on the axis
shown in Fig. 24(b) is predicted with excellent accuracy as well as by both the second order and the fourth
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order formulations. The length of the potential core as well as the decay of the mean velocity in the self similar
region of the jet are well captured. However, differences between the two formulations start to appear when
looking at higher order statistics. Fig. 24(c) shows the rms of the velocity at two locations in the jet at x=Dj ¼ 5
and x=Dj ¼ 10. The second order formulation consistently over-predicts the velocity rms close to the center of
the jet, while the fourth order formulation performs slightly better. The same conclusion can be obtained by
looking at the third order statistics shown in Fig. 24(d). Again, the second order formulation consistently leads
to an over-prediction, while the fourth order results follow more accurately the experimental profiles. Overall,
both the second and fourth order formulations predict with good accuracy the mean quantities. However,
higher order statistics are better predicted with higher order formulations. It can be noted that the improve-
ment obtained by increasing the order of accuracy is not as impressive as for the turbulent pipe case. This can
be attributed to the use of a very coarse mesh, on which one can expect that the sub-grid scale modeling errors
might be more dominant.

7.6. Cost

The improved accuracy that can be obtained by running with higher order schemes comes at a price:
indeed, the size of the stencils involved in the computations is significantly increased, and therefore the number
of operations is expected to increase as well when using higher order schemes. As a consequence, one may
wonder what is most efficient: retaining a low order accurate scheme and increasing the size of the mesh,
or increasing the accuracy of the numerical schemes. Clearly, this is a difficult question, for the answer will
strongly depend on the problem considered. However, it is possible to investigate this issue for a few simple
test cases, where the error and the cost can be properly evaluated.

First, it is interesting to report here the average cost per time step for some of the test cases presented
before, using different orders of accuracy. Table 3 summarizes this information. On average, going from
second to fourth order accuracy leads to doubling the cost of the simulation, while going from fourth to
sixth order slightly less than doubles the simulation cost. Considering the improvement on the quality of
the predictions that was observed for the different test cases, it appears that the fourth order accurate for-
mulation could be very beneficial. For instance, in the case of the inviscid convection of a circular vortex
presented in Section 3.8.1, one only has to use half the mesh points in each direction with the fourth order
formulation to obtain the same error level as the second order scheme. At constant CFL, this would trans-
late to a factor 4 reduction in CPU time for two-dimensional simulations and a factor 8 for three-dimen-
sional simulations. A more rigorous assessment of this is shown in Fig. 25, where the L1 norm of the error
between the computed axial velocity and the exact solution for various mesh sizes is plotted as a function of
the cost for one time step, normalized by the cost of one time step on a 24� 24 mesh with second order
accuracy. This test clearly shows that there is a range of errors for which it is more efficient to use fourth
order accuracy instead of second order accuracy. However, for most of the error range tested, sixth order
accuracy is too expensive to be of interest, except if very small errors are necessary. These results are obvi-
ously for the considered case, but they suggest in general that for different ranges of errors, different
schemes might be more efficient.

A more realistic problem is the LES of a turbulent pipe presented before. For this problem, the mesh
has been varied, and the mean axial velocity is compared to DNS. Three meshes are considered, namely a
24� 32� 24 mesh, a 32� 48� 32 mesh, and a 48� 64� 48 mesh. We are interested in comparing the
Table 3
Timing of different runs at various orders

Order Turbulent pipe Rayleigh–Taylor Vortex ring Isotropic turbulence

Time Ratio Time Ratio Time Ratio Time Ratio

2 3.33 – 1.17 – 0.84 – 1.20 –
4 5.62 1.69 2.54 2.17 2.23 2.65 1.84 1.53
6 8.57 1.52 4.75 1.87 3.55 1.60 3.00 1.63

Times are per time step, in seconds.
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relative cost of increasing the mesh size or increasing the order of accuracy, as well as the quality of the
predicted axial velocity profile. Fig. 26 shows the mean axial velocity with second order accuracy for the
three different meshes, and the mean axial velocity for various orders of accuracy for the coarsest mesh. It
is interesting to note that the fourth order results on the 24� 32� 24 mesh are very similar to the second
order results on a 32� 48� 32 mesh. Table 4 shows the cost per time step of the different computations,
as well as the relative errors between the LES mean axial velocity predictions and the DNS results at
yþ ¼ 10. Here, it can be observed that the fourth order computation on the coarse mesh is about half
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Fig. 26. Mean axial velocity for the LES of a pipe flow: second order (solid line); fourth order (dashed line); sixth order (dotted line); DNS
of Fukagata and Kasagi [35] (open symbols); increasing mesh size is indicated by the arrow.

Table 4
Time per time steps, in seconds, and relative errors between LES and DNS at yþ ¼ 10, for different order of accuracy and different meshes
for the turbulent pipe LES

Order 24 � 32 � 24 32 � 48 � 32 48 � 64 � 48

Cost Error Cost Error Cost Error

2 0.230 0.278 0.627 0.166 2.120 0.085
4 0.358 0.169 0.989 0.097 3.184 0.030
6 0.517 0.135 1.453 0.089 4.456 0.026
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the cost of the second order computation on the medium mesh, while these two simulations lead to similar
errors. The same remark applies to the fourth order computation on the medium mesh compared to the
second order computation on the fine mesh. Note also that these comparisons do not account for the fact
that the time step size increases as the mesh is coarsened. Here again, the fourth order method seems ben-
eficial for this case. However, the added cost of using the sixth order scheme is not justified by the
increase in accuracy, which is very limited between fourth and sixth order. Indeed, it is expected that
the LES modeling errors will very quickly dominate the computation, and that further improvement in
the quality of the predictions will require first to improve the model.

8. Conclusion

A variable density, conservative, arbitrarily high order finite difference method has been presented and
tested, that is an extension of the work of Morinishi et al. [18]. Discrete conservation properties as well as
accuracy have been verified with variable density and non-uniform meshes, both for cartesian and cylin-
drical coordinates. For the sake of completeness, an arbitrarily high order formulation of the viscous terms
of the Navier–Stokes equations has been proposed. A specific treatment of the boundary conditions is pro-
posed that ensures discrete primary conservation, while secondary conservation remains highly satisfactory.
Similarly, an analysis of the centerline behavior for high order schemes has been conducted that provides
adequate behavior of the solution in cylindrical coordinates. The full approach allows for accurate, robust,
and flexible simulations of turbulent reactive flows in complex geometries. This technique has been applied
in a range of test problems, including laminar and turbulent flows, constant and variable density flows, as
well as LES and DNS. Throughout this work, it has been observed that increasing the spatial order of
accuracy consistently improves the quality of the results obtained, suggesting that the use of such high
order schemes can be beneficial. The increase in computational effort, however, is not negligible when
using higher order schemes, and an investigation of the error to cost ratio has been performed. This sug-
gests that the order of the most efficient scheme will depend on the level of error that is acceptable for a
given simulation. However, for the test problems considered, namely the inviscid convection of a vortex
and the LES of a turbulent pipe flow, fourth order accuracy was found more efficient that second order
accuracy. Sixth order accuracy was found to be excessively expensive. One should analyze for a simulation
the different sources of errors from time integration, spatial discretization, and physical models, and adapt
the accuracy of the numerical scheme in order to ensure that the spatial discretization errors are not
dominant.
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